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Abstract

Knowledge distillation involves transferring soft labels
from a teacher to a student using a shared temperature-
based softmax function. However, the assumption of a
shared temperature between teacher and student implies
a mandatory exact match between their logits in terms of
logit range and variance. This side-effect limits the per-
formance of student, considering the capacity discrepancy
between them and the finding that the innate logit relations
of teacher are sufficient for student to learn. To address this
issue, we propose setting the temperature as the weighted
standard deviation of logit and performing a plug-and-play
Z-score pre-process of logit standardization before apply-
ing softmax and Kullback-Leibler divergence. Our pre-
process enables student to focus on essential logit rela-
tions from teacher rather than requiring a magnitude match,
and can improve the performance of existing logit-based
distillation methods. We also show a typical case where
the conventional setting of sharing temperature between
teacher and student cannot reliably yield the authentic dis-
tillation evaluation; nonetheless, this challenge is success-
fully alleviated by our Z-score. We extensively evaluate our
method for various student and teacher models on CIFAR-
100 and ImageNet, showing its significant superiority. The
vanilla knowledge distillation powered by our pre-process
can achieve favorable performance against state-of-the-art
methods, and other distillation variants can obtain consid-
erable gain with the assistance of our pre-process. The
codes, pre-trained models and logs are released on Github.

1. Introduction
The development of deep neural networks (DNN) has revo-
lutionized the field of computer vision in the past decade.
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Figure 1. Vanilla knowledge distillation implicitly enforces an ex-
act match between the magnitudes of teacher and student logits. It
is an unnecessary side-effect because it is found sufficient to pre-
serve the innate relations between their logits. Given the capac-
ity gap between them, it is also challenging for a lightweight stu-
dent to produce logits with the same magnitude as a cumbersome
teacher. In contrast, the proposed Z-score logit standardization
pre-process mitigates the side-effect. The standardized student
logits have arbitrary magnitude suitable for the student’s capacity
while preserving the essential relations learned from the teacher.

However, with increasing performance and capacity, the
model size and computational cost of DNN have also
been expanding. Despite of a tendency that larger models
have greater capacity, many efforts have been made by re-
searchers to cut down model size without sacrificing much
accuracy. In addition to designing lightweight models,
knowledge distillation (KD) has emerged as a new approach
to achieve this goal. It involves transferring the knowledge
of a pre-trained heavy model, known as the teacher network,
to a small target model, known as the student network.

Hinton et al. [13] firstly proposes distilling a teacher’s
knowledge into a student by minimizing a Kullback-Leibler
(KL) divergence between their predictions. A scaling factor
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of the softmax function in this context, called tempera-
ture T , is introduced to soften the predicted probabilities.
Traditionally, the temperature is set globally beforehand as
a hyper-parameter and remains fixed throughout training.
CTKD [24] adopts an adversarial learning module to pre-
dict sample-wise temperatures, adapting to varying sample
difficulties. However, existing logit-based KD approaches
still assume that the teacher and student should share tem-
peratures, neglecting the possibility of distinct temperature
values in the KL divergence. In this work, we demon-
strate that the general softmax expression in both clas-
sification and KD is derived from the principle of entropy
maximization in information theory. During this derivation,
Lagrangian multipliers appear and take the form of temper-
atures, based on which we establish the irrelevance between
the temperatures of teacher and student, as well as the irrele-
vance among temperatures for different samples. The proof
supports our motivation to allocate distinct temperatures be-
tween teacher and student and across samples.

Compared to an exact match of logit prediction, it
is found that the inter-class relations of predictions are
sufficient for student to achieve performance similar to
teacher [15]. A lightweight student faces challenges in
predicting logits with a comparable range and variance as
a cumbersome teacher, given the capacity gap between
them [7, 28, 35]. However, we demonstrate that the con-
ventional practice of sharing temperatures in KL divergence
still implicitly enforces an exact match between the student
and teacher’s logits. Existing logit-based KD methods, un-
aware of this issue, commonly fall in the pitfall, resulting
in a general performance drop. To address this, we pro-
pose using weighted logit standard deviation as an adaptive
temperature and present a Z-score logit standardization as
a pre-processing step before applying softmax . This pre-
processing maps arbitrary range of logits into a bounded
range, allowing student logits to possess arbitrary ranges
and variances while efficiently learning and preserving only
the innate relationships of teacher logits. We present a typ-
ical case where the KL divergence loss under the setting of
sharing temperatures in softmax may be misleading and
cannot reliably measure the performance of distilled stu-
dents. In contrast, with our Z-score pre-process, the issue
of the shared temperatures in the case is eliminated.

In summary, our contributions are in three folds
• Based on the entropy maximization principle in informa-

tion theory, we use Lagrangian multipliers to derive the
general expression of softmax in logit-based KD. We
show that the temperature comes from the derived mul-
tipliers, allowing it to be selected differently for various
samples and distinctly for student and teacher.

• To address the issues of the conventional logit-based KD
pipeline caused by shared temperatures, including an im-
plicit mandatory logit match and an inauthentic indica-

tion of student performance, we propose a pre-process of
logit distillation to adaptively allocate temperatures be-
tween teacher and student and across samples, capable of
facilitating existing logit-based KD approaches.

• We conduct extensive experiments with various teacher
and student models on CIFAR-100 [18] and Ima-
geNet [32] and demonstrate the superior advantages of
our method as a plug-and-play pre-process.

2. Related Work
Knowledge distillation [13] is designed to transfer the
“dark” knowledge from a cumbersome teacher model to a
lightweight student model. By learning from the soft la-
bels of teacher, student can achieve better performance than
training on hard labels only. The traditional method trains a
student by minimizing a difference such as KL divergence
between its predicted probability and the teacher’s. The
prediction of probability is commonly approximated by the
softmax of logit output. KD algorithms can be classified
into three types, i.e., logit-based [3, 13, 17, 22, 28, 47, 49,
50], feature-based [1, 4, 5, 10, 12, 23, 25, 27, 31, 37, 44],
and relation-based [15, 19, 29, 30, 39, 43] methods.

A temperature is introduced to flatten the probabilities
in logit-based methods. Several works [2, 13, 26] explore
its properties and effects. They reach an identical conclu-
sion that temperature controls how much attention student
pays on those logits more negative than average. A very
low temperature makes student ignore other logits and in-
stead mainly focus on the largest logit of teacher. How-
ever, they do not discuss why teacher and student share a
globally predefined temperature. It was unknown whether
temperature can be determined in an instance-wise level un-
til CTKD [24] proposed predicting sample-wise tempera-
tures by leveraging adversarial learning. However, it as-
sumes that teacher and student should share temperatures.
It was still undiscovered whether teacher and student can
have divergent temperatures. ATKD [9] proposes a sharp-
ness metric and chooses adaptive temperature by reducing
the gap between teacher and student. However, their as-
sumption of a zero logit mean relies on numerical approx-
imation and limits its performance. Additionally, they do
not thoroughly discuss where the temperature is derived
from and whether distinct temperatures can be assigned.
In this work, we provide an analytical derivation based on
the entropy-maximization principle, demonstrating that stu-
dents and teachers do not necessarily share a temperature.
It is also found sufficient to preserve the innate relationship
of prediction, instead of exact logit values of teacher [15].
However, the existing logit-based KD pipelines still implic-
itly mandate an exact match between teacher and student
logits. We thus define the temperature to be the weighted
standard deviation of logit to alleviate the issue and facili-
tate the existing logit-based KD approaches.



3. Background and Notation
Suppose we have a transfer dataset D containing totally N
samples {xn, yn}Nn=1, where xn ∈ RH×W and yn ∈ [1,K]
are the image and label respectively for the n-th sample.
The notations of H , W and K are image height, width and
the number of classes. Given an input {xn, yn}, teacher
fT and student fS respectively predict logit vectors vn and
zn ∈ R1×K . Namely, zn = fS(xn) and vn = fT (xn).

It is widely accepted that a softmax function involving
a temperature T is used to convert the logit to probability
vectors q(zn) or q(vn) such that their k-th items have

q(zn)
(k) =

exp(z
(k)
n /T )∑K

m=1 exp(z
(m)
n /T )

, (1)

q(vn)
(k) =

exp(v
(k)
n /T )∑K

m=1 exp(v
(m)
n /T )

, (2)

where z
(k)
n and v

(k)
n are the k-th item of zn and vn respec-

tively. A knowledge distillation process is essentially letting
q(zn)

(k) mimic q(vn)
(k) for any class and all samples. The

objective is realized by minimizing KL divergence

LKL (q(vn)||q(zn)) =
K∑

k=1

q(vn)
(k) log

(
q(vn)

(k)

q(zn)(k)

)
,

which is theoretically equivalent to a cross-entropy loss
when optimizing solely on z,

LCE (q(vn), q(zn)) = −
K∑

k=1

q(vn)
(k) log q(zn)

(k). (3)

Note that they are empirically nonequivalent as their gradi-
ents diverge due to the negative entropy term of q(vn).

4. Methodology
It is widely accepted that T is shared for teacher and student
in Eq. 1 and Eq. 2. In contrast, in Sec. 4.1, we show the ir-
relevance between the temperatures of teacher and student,
as well as across different samples. Guaranteed that tem-
peratures can be different between teacher and student and
among sample, we further show two side-effect drawbacks
of shared-temperatures setting in conventional KD pipelines
in Sec. 4.2. In Sec. 4.3, we propose leveraging logit stan-
dard deviation as a factor in temperature and derive a pre-
process of logit standardization.

4.1. Irrelevance between Temperatures
In Sec. 4.1.1 and 4.1.2, we first give a derivation of the
temperature-involved softmax function in classification
and KD based on the entropy-maximization principle in in-
formation theory. This implies the temperatures of student
and teacher can be distinct and sample-wisely different.

4.1.1 Derivation of softmax in Classification
The softmax function in classification can be proved to
be the unique solution of maximizing entropy subject to the
normalization condition of probability and a constraint on

the expectation of states in information theory [16]. The
derivation is also leveraged in confidence calibration to for-
mulate temperature scaling [8]. Suppose we have the fol-
lowing constrained entropy-maximization optimization,

max
q

L1 = −
N∑

n=1

K∑
k=1

q(vn)
(k) log q(vn)

(k)

s.t.



K∑
k=1

q(vn)
(k) = 1, ∀n

Eq[vn] =

K∑
k=1

v(k)
n q(vn)

(k) = v(yn)
n , ∀n.

(4)

The first constraint holds due to the requirement of discrete
probability density, while the second constraint controls the
scope of the distribution such that model accurately predicts
the target class. Suppose q̂n to be the one-hot hard proba-
bility distribution whose values are all zero except at the
target index q̂

(yn)
n = 1. The second constraint is then actu-

ally Eq[vn] =
∑K

k=1 v
(k)
n q̂

(k)
n = v

(yn)
n . This is equivalent

to making model predict the correct label yn. By applying
Lagrangian multipliers {α1,i}Ni=1 and {α2,i}Ni=1, it gives

LT = L1 +

N∑
n=1

α1,n

(
K∑

k=1

q(vn)
(k) − 1

)

+

N∑
n=1

α2,n

(
K∑

k=1

v(k)
n q(vn)

(k) − v(yn)
n

)
.

Taking the partial derivative with respective to α1,n and
α2,n yields back the constraints. In contrast, taking the
derivative with respective to q(vn)

(k) gives
∂LT

∂q(vn)(k)
= −1− log q(vn)

(k) + α1,n + α2,nv
(k)
n , (5)

which leads to a solution by making the derivative zero:

q(vn)
(k) = exp

(
α2,nv

(k)
n

)
/ZT , (6)

where ZT = exp (1− α1,n) =
∑K

m=1 exp
(
α2,nv

(m)
n

)
is

the partition function to fulfill the normalization condition.

4.1.2 Derivation of softmax in KD

Following the idea, we define a problem of entropy-
maximization to formulate the softmax in KD. Given a
well-trained teacher and its prediction q(vn), we have the
objective function for the prediction of student as follows,

max
q

L2 = −
N∑

n=1

K∑
k=1

q(zn)
(k) log q(zn)

(k)

s.t.



K∑
k=1

q(zn)
(k) = 1, ∀n

K∑
k=1

z(k)n q(zn)
(k) = z(yn)

n , ∀n

K∑
k=1

z(k)n q(zn)
(k) =

K∑
k=1

z(k)n q(vn)
(k), ∀n.

(7)



By applying Lagrangian multipliers β1,n, β2,n and β3,n,

LS = L2 +

N∑
n=1

β1,n

(
K∑

k=1

q(zn)
(k) − 1

)

+

N∑
n=1

β2,n

(
K∑

k=1

z(k)n q(zn)
(k) − z(yn)

n

)

+

N∑
n=1

β3,n

K∑
k=1

z(k)n

(
q(zn)

(k) − q(vn)
(k)
)
.

Taking its derivative with respective to q(zn)
(k) gives

∂LS

∂q(zn)(k)
= −1−log q(zn)(k)+β1,n+β2,nz

(k)
n +β3,nz

(k)
n .

Suppose βn = β2,n + β3,n for simplicity and it gives

q(zn)
(k) = exp

(
βnz

(k)
n

)
/ZS , (8)

where ZS = exp(1−β1,n) =
∑K

k=1 exp(βnz
(k)
n ) holds be-

cause of the normalization condition of probability density.
The formulation in Eq. 8 has the same structure as Eq. 6.
Distinct Temperatures. Note that the partial derivatives of
LT with respective to α1,n and α2,n lead back to the two
constraints respectively in Eq. 4 and the constraints are ir-
relevant to α1,n and α2,n. A similar case holds for Eq. 7.
As a result, no explicit expression of them can be given
and thus their values can be manually defined. If we set
βn = α2,n = 1/T , Eq. 6 and 8 turn to the expressions
in KD involving a shared temperature for both student and
teacher. When βn = α2,n = 1, the formulations revert to
the traditional softmax function commonly used in clas-
sification. Eventually, we can choose βn ̸= α2,n, indicating
that students and teachers can have distinct temperatures.
Sample-wisely different Temperatures. It is common to
define a global temperature for all samples. Namely for any
n, α2,n and βn are defined as a constant value. In contrast,
they could vary across different samples due to the lack of
restrictions on them. It lacks a foundation to choose a global
constant value as temperature. As a result, adopting sample-
wise varying temperatures is allowed.

4.2. Drawbacks of Shared Temperatures
In this section, we show two shortcomings of the shared
temperatures setting in conventional KD pipeline. We first
rewrite the softmax in Eq. 8 in a general formulation by
introducing two hyper-parameters aS and bS ,

q (zn; aS , bS)
(k)

=
exp

[
(z

(k)
n − aS)/bS

]
∑K

m=1 exp
[
(z

(m)
n − aS)/bS

] ,
where aS can be cancelled out and does not violate the
equality. When aS = 0, bS = 1/βn, it yields back the
special case in Eq. 8. The similar equation for the case of
teacher can be written by introducing aT and bT .

For a finally well-distilled student, we assume the KL
divergence loss reaches minimum and its predicted prob-

ability density matches that of teacher, i.e., ∀k ∈ [1,K],
q(zn; aS , bS)

(k) = q(vn; aT , bT )
(k). Then for arbitrary

pair of indices i, j ∈ [1,K], it can easily lead to

exp
[
(z

(i)
n − aS)/bS

]
exp

[
(z

(j)
n − aS)/bS

] =
exp

[
(v

(i)
n − aT )/bT

]
exp

[
(v

(j)
n − aT )/bT

]
⇒
(
z(i)n − z(j)n

)
/bS =

(
v(i)
n − v(j)

n

)
/bT .

By taking a summation across j from 1 to K, we have(
z(i)n − zn

)
/bS =

(
v(i)
n − vn

)
/bT , (9)

where zn and vn are the mean of the student and teacher
logit vectors respectively, i.e., zn = 1

K

∑K
m=1 z

(m)
n (sim-

ilar and omitted for vn). By taking the summation of the
squared Eq. 9 across i from 1 to K, we can obtain

σ(zn)
2

σ(vn)2
=

1
K

∑K
i=1

(
z
(i)
n − zn

)2
1
K

∑K
i=1

(
v
(i)
n − vn

)2 =
b2S
b2T

, (10)

where σ is the function of standard deviation for an input
vector. From Eq.9 and 10, we can describe two properties
of a well-distilled student in terms of the logit shift and vari-
ance matching.
Logit shift. From Eq.9, it can be found that a constant shift
exists between the logits of student and teacher in arbitrary
index under the traditional setting of shared temperature
(bS = bT ), i.e.,

z(i)n = v(i)
n +∆n, (11)

where ∆n = zn − vn can be considered as constant for
the n-th sample. This implies in the traditional KD ap-
proach, student is forced to strictly mimic the shifted logit
of teachers. Considering the gap of their model size and
capacity, student may be unable to produce as wide logit
range as teacher [7, 28, 35]. In contrast, a student can be
considered excellent enough when its logit rank matches
teacher [15], i.e., given the indices that sorts the teacher
logits t1, ..., tK ∈ [1,K] such that v(t1)

n ≤ · · · ≤ v
(tK)
n ,

then z
(t1)
n ≤ · · · ≤ z

(tK)
n holds. The logit relation is the es-

sential knowledge that makes student predict as excellently
as teacher. Such a logit shift is thus a side-effect in con-
ventional KD pipeline and a shackle compelling student to
generate unnecessarily difficult results.
Variance match. From Eq. 10, we come into a conclu-
sion that the ratio between the temperatures of student and
teacher equals the ratio between the standard deviations of
their predicted logits for a well-distilled student, i.e.,

σ(zn)/σ(vn) = bS/bT . (12)
In the setting of temperature sharing in vanilla KD, the stu-
dent is forced to predict logit such that σ(zn) = σ(vn).
This is another shackle applied to student restricting the
standard deviation of its predicted logits. In contrast, since
the hyper-parameter comes from Lagrangian multiplier and
is flexible to tune, we can define b∗S ∝ σ(zn) and b∗T ∝



Algorithm 1: Weighted Z-score function.
Input: Input vector x and Base temperature τ
Output: Standardized vector Z(x; τ)

1 x← 1
K

∑K
k=1 x

(k)

2 σ(x)←
√

1
K

∑K
k=1

(
x(k) − x

)2
3 return (x− x)/σ(x)/τ

Algorithm 2: Z-score logit standardization pre-
process in knowledge distillation.

Input: Transfer set D with image-label sample pair
{xn, yn}Nn=1, Base Temperature τ , Teacher
fT , Student fS , Loss LKD (e.g., LKL), loss
weight λ, and Z-score function Z in Algo. 1

Output: Trained student model fS
1 foreach (xn, yn) in D do
2 vn ← fT (xn), zn ← fS(xn)
3 q(vn)← softmax [Z(vn; τ)]
4 q(zn)← softmax [Z(zn; τ)]
5 q′(zn)← softmax (zn)
6 Update fS towards minimizing

λCELCE (yn, q′(zn)) + λKDτ2L (q(vn), q(zn))

7 end

σ(vn). In that way, the equation in Eq. 12 always holds.

4.3. Logit Standardization
To break the two shackles, we therefore propose setting the
hyper-parameters aS , bS , aT and bS to be the mean and the
weighted standard deviation of their logits respectively, i.e.,

q (zn; zn, σ(zn))
(k)

=
exp(Z(zn; τ)(k))∑K

m=1 exp(Z(zn; τ)(m))
,

where Z is the Z-score function in Algo. 1. The case for
teacher logit is similar and omitted. A base temperature τ is
introduced and shared for both teacher and student models.
The Z-score standardization has at least four advantageous
properties, i.e., zero mean, finite standard deviation, mono-
tonicity and boundedness.
Zero mean. The mean of standardized vector can be easily
shown to be zero. In previous works [9, 13], a zero mean is
assumed and usually empirically violated. In contrast, the
Z-score function intrinsically guarantees a zero mean.
Finite standard deviation. The standard deviation of the
weighted Z-score output Z(zn; τ) can be shown equal to
1/τ . The property makes the standardized student and
teacher logit map to an identical Gaussian-like distribution
with zero mean and definite standard deviation. The map-
ping of standardization is many-to-one, meaning that its re-
verse is indefinite. The variance and value range of original
student logit vector zn is thereby free of restriction.
Monotonicity. It is easy to show that Z-score is a linear
transformation function and thus lies in monotonic func-

Standardized Logit of 

Logit of student Logit of student Logit of teacher 

4.0

1.0

3.0

2.0

Cat Dog Frog

0.4
0.1

0.3 0.2
Cat Dog Bird Frog

2.8

1.0

3.0

2.0

Cat Dog Bird Frog

(a) 's prediction: (b) Teacher prediction: Dog (c) 's prediction: Dog

-1.320 0.660 0.880 -0.220

-score

Standardized Logit of 

-1.162 1.162 0.387 -0.387

Standardized Logit of 

-1.162 1.162 0.387 -0.387

Bird

-score -score

Figure 2. A toy case where two students, S1 and S2, learning
from the same teacher with an identical temperature (assumed 1
for simplicity). Student S1 generates the logits much closer to the
teacher’s in terms of magnitude and thus has lower loss of 0.1749,
but it returns a wrong prediction of “bird”. In contrast, Student
S2 outputs the logits far from the teacher’s and yields greater loss
value of 0.3457, but it returns the correct prediction of “dog”. Af-
ter the proposed logit standardization, the issue is addressed.

tions. This property ensures that the transformed student
logit remains the same rank as the original one. The nec-
essary innate relation within teacher logit can thus be pre-
served and transferred to student.
Boundedness. The standardized logit can be shown
bounded within [−

√
K − 1/τ,

√
K − 1/τ ]. Compared to

traditional KD, it is feasible to control the logit range and
avoid extremely large exponential value. To this end, we
define a base temperature to control the range.

The pseudo-code of the proposed logit standardization
pre-process is illustrated in Algo. 2.

4.3.1 Toy Case
Fig. 2 shows a typical case where the conventional logit-
based KD setting of shared temperature may lead to an in-
authentic evaluation of student performance. The first stu-
dent S1 predicts logits closer to the teacher T in terms of
magnitude, while the second student S2 preserves the same
innate logit relations as the teacher. As a result, S1 obtains
lower KL divergence loss of 0.1749, much better than the
second student S2 (0.3457). However, S1 has a wrong pre-
diction of “Bird” while S2 predicts “Dog” correctly, which
contradicts the loss comparison. By applying our Z-score,
all logits are re-scaled and the relations among logits in-
stead of their magnitudes are emphasized in the evaluation.
Namely, S2 gets a loss of 0, much better than S1 of 0.0995,
which is in line with the observed predictions.

5. Experiments
Datasets. We conduct experiments on CIFAR-100 [18]
and ImageNet [32]. CIFAR-100 [18] is a common dataset



Table 1. The Top-1 Accuracy (%) of different knowledge distillation methods on the validation set of CIFAR-100 [18]. The teacher
and student have distinct architectures. The KD methods are sorted by the types, i.e., feature-based and logit-based. We apply our logit
standardization to the existing logit-based methods and use ∆ to show its performance gain. The values in blue denote slight enhancement
and those in red non-trivial enhancement no less than 0.15. The best and second best results are emphasized in bold and underlined cases.

Type
Teacher ResNet32×4 ResNet32×4 ResNet32×4 WRN-40-2 WRN-40-2 VGG13 ResNet50

79.42 79.42 79.42 75.61 75.61 74.64 79.34

Student SHN-V2 WRN-16-2 WRN-40-2 ResNet8×4 MN-V2 MN-V2 MN-V2
71.82 73.26 75.61 72.50 64.60 64.60 64.60

Feature

FitNet [31] 73.54 74.70 77.69 74.61 68.64 64.16 63.16
AT [46] 72.73 73.91 77.43 74.11 60.78 59.40 58.58
RKD [29] 73.21 74.86 77.82 75.26 69.27 64.52 64.43
CRD [37] 75.65 75.65 78.15 75.24 70.28 69.73 69.11
OFD [12] 76.82 76.17 79.25 74.36 69.92 69.48 69.04
ReviewKD [5] 77.78 76.11 78.96 74.34 71.28 70.37 69.89
SimKD [4] 78.39 77.17 79.29 75.29 70.10 69.44 69.97
CAT-KD [10] 78.41 76.97 78.59 75.38 70.24 69.13 71.36

Logit

KD [13] 74.45 74.90 77.70 73.97 68.36 67.37 67.35
KD+Ours 75.56 75.26 77.92 77.11 69.23 68.61 69.02
∆ 1.11 0.36 0.22 3.14 0.87 1.24 1.67

CTKD [24] 75.37 74.57 77.66 74.61 68.34 68.50 68.67
CTKD+Ours 76.18 75.16 77.99 77.03 69.53 68.98 69.36
∆ 0.81 0.59 0.33 2.42 1.19 0.48 0.69

DKD [50] 77.07 75.70 78.46 75.56 69.28 69.71 70.35
DKD+Ours 77.37 76.19 78.95 76.75 70.01 69.98 70.45
∆ 0.30 0.49 0.49 1.19 0.73 0.27 0.10

MLKD [17] 78.44 76.52 79.26 77.33 70.78 70.57 71.04
MLKD+Ours 78.76 77.53 79.66 77.68 71.61 70.94 71.19
∆ 0.32 1.01 0.40 0.35 0.83 0.37 0.15

for image classification consisting of 50,000 training and
10,000 validation images. It contains 100 classes and its im-
age size is 32×32. ImageNet [32] is a large-scale dataset for
image classification containing 1,000 categories and around
1.28 million training and 50,000 validation images.
Baselines. We evaluate the effect of our logit standardiza-
tion as pre-process for multiple logit-based KD approaches,
including KD [13], CTKD [24], DKD [50] and MLKD[17].
We also compare with various feature-based KD methods
including FitNet [31], RKD [29], CRD [30], OFD [12], Re-
viewKD [5], SimKD [4], and CAT-KD [10].
Implementation Details. We follow the same experimental
settings as previous works [5, 17, 50]. For the experiments
on CIFAR-100, the optimizer is SGD [36] and the epoch
number is 240, except for MLKD being 480 [17]. The
learning rate is set initially 0.01 for MobileNets[14, 33] and
ShuffleNets [48] and 0.05 for other architectures consisting
of ResNets [11], WRNs [45] and VGGs [34]. All results
are reported by taking average over 4 trials. More detailed
experimental settings are elaborated in the supplements.

5.1. Main Results
Results on CIFAR-100. We compare the KD results of
different methods under various teacher/student settings in
Tab. 1 and 2. Tab. 1 shows the cases that the teacher and
student models have distinct structures, while Tab. 2 demon-
strates the cases that they have the same architecture.

We evaluate our pre-process on four existing logit-based
KD methods. As shown, our Z-score standardization can

constantly improve their performances. After applying
our pre-process, the vanilla KD [13] achieves comparable
performance to the state-of-the-art (SOTA) feature-based
methods. As SOTA logit-based methods, DKD [50] and
MLKD [17] can also be further boosted by our pre-process.
CTKD [24] is a KD method that can determine sample-wise
temperatures. We combine it with ours by leveraging it to
predict the base temperature in Algo. 2. As illustrated in
tables, student models distilled by CTKD benefits from our
pre-process as well.

Results on ImageNet of different methods in terms of top-1
and top-5 accuracy are compared in Tab. 3. Our pre-process
can achieve consistent improvement for all the three logit-
based methods on the large-scale dataset as well.

Ablation Studies We conduct extensive ablation studies in
terms of different configurations of base temperature and
the weight of KD loss λKD. The part of results when
base temperature is 2 are shown in Tab. 4. We can see
as the weight of KD loss increases, the vanilla KD where
softmax takes the original logit vectors as input cannot
have a considerable performance gain. In contrast, our Z-
score pre-process achieves a significant enhancement. More
ablation studies of other settings are in the supplements.

The weight of KD loss is set relatively larger than that
of CE loss because our pre-process enables student to focus
more on the dark knowledge from teacher instead of hard
labels. Another reason of the large KD weight is to com-
pensate the gradient involving Z-score.



Table 2. The Top-1 Accuracy (%) of different knowledge distillation methods on the validation set of CIFAR-100 [18]. The teacher and
student have identical architectures but different configurations. The KD methods are sorted by the types. We apply our logit standardization
to the existing logit-based methods and use ∆ to show its performance gain. The values in blue denote slight enhancement and those in red
non-trivial enhancement no less than 0.15. The best and second best results are emphasized in bold and underlined cases.

Type
Teacher ResNet32×4 VGG13 WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet110

79.42 74.64 75.61 75.61 72.34 74.31 74.31

Student ResNet8×4 VGG8 WRN-40-1 WRN-16-2 ResNet20 ResNet32 ResNet20
72.50 70.36 71.98 73.26 69.06 71.14 69.06

Feature

FitNet [31] 73.50 71.02 72.24 73.58 69.21 71.06 68.99
AT [46] 73.44 71.43 72.77 74.08 70.55 72.31 70.65
RKD [29] 71.90 71.48 72.22 73.35 69.61 71.82 69.25
CRD [37] 75.51 73.94 74.14 75.48 71.16 73.48 71.46
OFD [12] 74.95 73.95 74.33 75.24 70.98 73.23 71.29
ReviewKD [5] 75.63 74.84 75.09 76.12 71.89 73.89 71.34
SimKD [4] 78.08 74.89 74.53 75.53 71.05 73.92 71.06
CAT-KD [10] 76.91 74.65 74.82 75.60 71.62 73.62 71.37

Logit

KD [13] 73.33 72.98 73.54 74.92 70.66 73.08 70.67
KD+Ours 76.62 74.36 74.37 76.11 71.43 74.17 71.48
∆ 3.29 1.38 0.83 1.19 0.77 1.09 0.81

KD+CTKD [24] 73.39 73.52 73.93 75.45 71.19 73.52 70.99
KD+CTKD+Ours 76.67 74.47 74.58 76.08 71.34 74.01 71.39
∆ 3.28 0.95 0.65 0.63 0.15 0.49 0.40

DKD [50] 76.32 74.68 74.81 76.24 71.97 74.11 71.06
DKD+Ours 77.01 74.81 74.89 76.39 72.32 74.29 71.85
∆ 0.69 0.13 0.08 0.15 0.35 0.18 0.79

MLKD [50] 77.08 75.18 75.35 76.63 72.19 74.11 71.89
MLKD+Ours 78.28 75.22 75.56 76.95 72.33 74.32 72.27
∆ 1.20 0.04 0.21 0.32 0.14 0.21 0.38

Table 3. The top-1 and top-5 accuracy (%) on the ImageNet val-
idation set [32]. The best and second best results are emphasized
in bold and underlined.

Teacher/Student ResNet34/ResNet18 ResNet50/MN-V1

Accuracy top-1 top-5 top-1 top-5

Teacher 73.31 91.42 76.16 92.86
Student 69.75 89.07 68.87 88.76

AT [46] 70.69 90.01 69.56 89.33
OFD [12] 70.81 89.98 71.25 90.34
CRD [37] 71.17 90.13 71.37 90.41
ReviewKD [5] 71.61 90.51 72.56 91.00
SimKD [4] 71.59 90.48 72.25 90.86
CAT-KD [10] 71.26 90.45 72.24 91.13

KD [13] 71.03 90.05 70.50 89.80
KD+Ours 71.42+0.39 90.29+0.24 72.18+1.68 90.80+1.00

KD+CTKD [24] 71.38 90.27 71.16 90.11
KD+CTKD+Ours 71.81+0.43 90.46+0.19 72.92+1.76 91.25+1.14

DKD [50] 71.70 90.41 72.05 91.05
DKD+Ours 71.88+0.18 90.58+0.17 72.85+0.80 91.23+0.18

MLKD [17] 71.90 90.55 73.01 91.42
MLKD+Ours 72.08+0.18 90.74+0.19 73.22+0.21 91.59+0.17

5.2. Extensions
Logit range. We plot a bar plot in the first row of Fig. 3 to
show an example of logit range. The second row of Fig. 3
illustrates the extent of average logit difference between
teacher and student. Without applying our pre-process, the
student fails to produce as large logit as the teacher at the
target label index (7.5 v.s. 12). The mean average distance
between the teacher and student logits also reaches 0.27.
The restriction of logit range impedes the student to predict

(a) Vanilla KD
Mean: 0.27, Max: 3.03.

(b) Ours w/o Z-score
Mean: 0.94, Max: 7.36.

(c) Ours w/ Z-score
Mean: 0.18, Max:1.18.

Figure 3. 1st Row: An example bar plot of logit output. 2nd Row:
The heatmap of the average logit difference between the teacher
and student. Our pre-process indeed enables the student to gener-
ate the logits of divergent range from the teacher as shown in 3b,
while its standardized logits (3c) are more closer to the teacher’s
than vanilla KD (3a).

correctly. In contrast, our pre-process breaks the restric-
tion and enables student to generate the logits of appropriate
range for itself. Its effective logit output after standardiza-
tion on the contrary matches the teacher’s nicely. The mean
distance of standardized logits also shrinks to 0.18, imply-
ing its better mimicking the teacher.

Logit variance. As illustrated in the first row of Fig. 3,
the vanilla KD forces the variance of the student logits ap-
proaches the teacher’s (3.78 v.s. 3.10). However, our pre-
process breaks the shackle and the student logit can have
flexible logit variance (0.48 v.s. 3.10), while its standard-



(a) Teacher

w/o Ours w/ Ours

(b) KD [13]

w/o Ours w/ Ours

(c) CTKD [24]

w/o Ours w/ Ours

(d) DKD [50]

w/o Ours w/ Ours

(e) MLKD [17]
Figure 4. The t-SNE [40] visualization of features. The teacher and student are ResNet32×4 and ResNet8×4.

(a) Teacher models of different sizes

(b) Teacher and student distilled by KD only and KD with our pre-process

Figure 5. The bivariate histogram of logit mean and logit standard
deviation for multiple models on CIFAR-100.

ized logits have the same variance as the teacher (both 0.99).
Feature visualizations of deep representations are shown
in Fig. 4. As implied, our pre-process improves the feature
separability and discriminability of all the methods includ-
ing KD [13], CTKD [24], DKD [50] and MLKD [17].
Improving distillation for large teacher. Existing
works [7, 41, 50] observe that a larger teacher is unnecessar-
ily a better one. The phenomenon implies that the transfer
of knowledge from a large teacher is not always as smooth
as a small one. They explain the observation with the exis-
tence of a capacity gap between cumbersome teachers and
lightweight students. We interpret the issue as the difficulty
of students in mimicking logits of comparable range and
variance as teachers. As shown in the bivariate histogram
of Fig. 5a, the bigger teachers like ResNet50 and VGG13
generates more condensed logits of mean closer to zero
and smaller standard deviation. The tendency shows that
smaller models intrinsically predicts the outputs of larger
bias from zero mean and larger variance. Therefore, when
students are small, the same tendency remains and they are
difficult to produce as compact logits as large teachers.

We alleviate the problem by our pre-process. As shown
in Tab. 5, our pre-process consistently improves the distilla-
tion performance for various teachers of different sizes and
capacities. We also show the mimicking goodness of stu-
dents by a bivariate histogram plot in Fig. 5b. The student

Table 4. The ablation studies under different settings in our Z-
score. The base temperature τ is set to be 2. By default λCE =
0.1. The logit vector of teacher vn and student zn are abbreviated
as z for succinctness. The teacher and student are ResNet32×4
and ResNet8×4.

λKD z (KD) z− z z
σ(z)

(z−z)
σ(z)

(Ours)

0.9 73.60 73.37 73.79 74.14
3.0 74.38 74.33 75.86 76.11
6.0 74.45 74.82 76.44 76.56
9.0 73.33 73.94 76.30 76.62
12.0 68.29 71.56 76.49 76.56
15.0 65.34 62.01 76.42 76.61
18.0 63.45 61.31 76.18 76.33

Table 5. The results of distillation of various teacher models on
CIFAR-100. The student model is WRN-16-2.

Teacher VGG13 W-28-2 W-40-2 W-16-4 W-28-4 ResNet50
74.64 75.45 75.61 77.51 78.60 79.34

KD [13] 74.93 75.37 74.92 75.79 75.04 75.36
KD+Ours 75.03 76.32 76.11 76.72 75.77 76.24

DKD [50] 75.45 75.92 76.24 76.00 76.45 76.60
DKD+Ours 75.56 76.39 76.39 76.68 76.67 76.82

distilled by vanilla KD predicts logits apparently deviated
from teachers’ in terms of logit mean and standard devia-
tion. In contrast, our pre-process enables the student to per-
fectly matching the teacher in terms of standardized logit
mean and standard deviation (see the zoomed-in region at
bottom right corner).
More experiments of distilling vision Transformers [6, 20,
21, 38, 42] are attached in the supplements.

6. Conclusion
In this work, we identify a lack of theoretical support
for the global and shared temperature in conventional KD
pipelines. Our analysis based on the principle of entropy
maximization leads to the conclusion that the temperature is
derived from a flexible Lagrangian multiplier, allowing for a
flexible value assignment. We then highlight several draw-
backs associated with the conventional practice of sharing
temperatures between teachers and students. Additionally,
we presented a toy case where the KD pipeline with shared
temperature led to an inauthentic evaluation of student per-
formance. To mitigate the concerns, we propose a logit Z-
score standardization as a pre-process to enable student to
focus on the innate relations of teacher logits rather than
logit magnitude. The extensive experiments demonstrate
the effectiveness of our pre-process in enhancing the exist-
ing logit-based KD methods.
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